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(:eneralized Pauli and Dirac matrices are derived for

^rbitrary Riemannian spaces. ,ni determination of such

i;.trioe is baled on the theory of trasf6rmaitoni

to principal axest which is de".ioped from a new point

of view and expressed by explicit formulae The

rolGt4onship between tonsoro a ',apinors is defined in a

vcr,, Peneral wayp, and H. Weayl's ,I'aory of oevariant

spinor differentiation,(see H, rIl, Elektron and

VI., itation, Zeitschr, f. Snyso 54t 1929) is aeneralized

in taccordanoe with the 8eneral o.nI-or-spinor relationship.
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2. General Introduction

In his classical paper cn the spinning electron P. A. M. Dirac

asked whether it is possible to interpret the square sum of four

variables x. as the square of a linear form:
1

2 2 2 2 2
x1 + x 2 + x3 + x4 = (pixl + P2x 2 + P3x3 + P4 X4 )

The coefficients pi must then be quantities satisfying the

relations

2

Pi piPk + pkpi -- 0 (i / k).

Four quantities of this kind define a certain non-commutative

associative abstract algebra, which was introduced by W. K.

Clifford as early as 1878: Am. Jour. nf Math. 1, 1878, p.350.

If we now consider xi, x 2 , x3 , x4 = ict as the coordinates of

space-time, then

2 2 2 2
x1 + x2 + x3 + x4 = 0

ic thf. equation of the light-?un , the generators of which are

thE, possible paths of light. In the restricted theory of

relativity normal coordinate systems for space-time are connected

; ith each other by arbitrary Iorcntz transformations, i.e. by

any rcal linear transformation which leavts the form

2 2 2 2
x1 + x2 + x3 + x4

invariant and which does not ir.'erchange past and futures Lorentz

transformations constitutE a Prrup, the "complete Lorentz group",

and this group describes th( hoaogeneity of the 4-dimensional

wnrld. This group consists of "positive" and "negative" transfnrma-

tions, i.e. transformations &itl, drtcrminants +1 and -1,
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respectively. The former constitute the "restricted Lorentz

group", from which the complete group is obtained by

introducing in addition the spatial reflection

x4 -x 4 , x X--y.x (j = 1,2,3).

An important mathematical fact is the following:

any binary linear transformation with determinant of

absolute value 1 induces a positive Lorentz transformation

in the x . Transformations which differ only by a factor

iA
e of absolute value 1 give rise to the same group element.

A new aspect arises in the general theory of relativity.

Einstein recognizes as the source of the gravitational forces

the metrical structure of the world and considers this

structure as a formal property of the world. According to

this, it must be assumed that the world-points form a four-

dimensional manifold, on which a measure determination is

impressed by a non-degenerate quadratic differential form Q

having one positive and three negative dimensions. In any

coordinate system xi (i = 1,2,5,4), in Riemann's sense, let

Q = gik dXidx
.

Physical laws will then be expressed by tensor relations that

are invariant for arbitrary continuous transformations of the

arguments xi. Now the question arises whether the correspondence

between the Lorentz group and the binary unimodular group has

an analogon in the general theory of relativity. The purpose

of our investigations is to answer this question. Attempts

in this direction were made by several authors more than

30 years ago (Fock-Iwanenko, "Weyl, Einstein, Schr6dinger,

Levi-Civita, and others, see our list of literature in the

First Final Technical Report and at the end nf this report.

In all these attempts rigid local "four-legs" are used in

order to transfer the classi(ql Prinor concept to Riemannian

geometry. Our studies have the advantage of being without



such rigid restrictions. The most important conception we

have introduced is our fundamental decomposition formula

of the first year. It is the mathematical basis on which

the theory elaborated in the second year is established.

The content of these recent studies is comprehended in the

abstract, cf. page 1.

3. Generalized Pauli matrices

Pauli's spin matrices

:) 1 o) , u(2) = 0 ) 1 U(3) = ( 1

fulfil the commutation relations

u(j)u(k) + U(k)U(j) = 26(jk) j2 (j k

Lo (j ! k).

The indices are written as arguments because they denote

neither ccvariance nor contravariance. The linear

combinations

Vj= aj(k)U(k)

are said to be generalized Pauli matrices if they fulfil

the commutation relations

VjVk + VkVj = 2gjk,

where the functions gjk are to be interpreted an the

components of the metrical fundamental tensor of the

space under consideration. The question now arises what

conditions have to be satisfied by the coefficients
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a.(k). It is answered easily: From

2gj k = V JV k + V k V =

.(a 3(l)ak(m) + a k(l )a J(M))MlU(m)

u a J(l)ak(m)(U(l)U(m) + TJ(m)U(1))

- 2a 3(1)a k(l)

we see that the condition

has to be satisfied. Such metrical decompositions have been

derived by several authors (Einstein, Vock-Iwanenko, Weyl,

and others; cf. our list of literature in the First Final

Technical Report and at the end of this report).

In addition, Pauli's matrices fulfil the following anti-

communication relations:

U(2)U(3) -u(3)U(2) - 2i0(1),

U(3UNl -u(1)u(3) - 2iU(2),

U(I)U(2) -U(2)U(I) - 21U(3).

What are the corresponding generalized relations ? In order

to answer this question we use the matrix calculus. On

introducing the notations

('U ) m (;; )
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A, 1 a2(2 al(3) )
a3(1) a3(2) a3(3)

911 912 13

G = 912 922 g 2 3  j
913 923 g33

we may write the relations derived above in the following

abbreviated form:

v = Au

AA' = G

and [U,uI = 2iu.

The relations under consideration are derived as follows:

Iv,vJ = [Au,AuJ = det(A)A'- 1 n,u] =

= 2i det(A)A'-u =

= 2i det(A)A'- A-v =

= 2i detl/2(G)G-lv

Explicitly, they read

V 2V3 - V3V2 = 2i81/2(8 11VI + 
12 V2 + g1 3 V3),

V3y1 - Vl V3 - 2ig1/2(g12V1 + gV 2 + g2 3 V3),

V1 V2 - V2V1 .2igl/2(g13V1 + g2 3V2 + g
3 3V )

where g = det(G) and gjk are the components of the matrix

G1 , i.e. the contravariant components of the metrical

fundamental tensor.
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4. Generalized Pauli matrices

and infinitesimal motions

As it is well-known, Pauli's spin matrices represent an

operator of infinitesimal rotation. This fact is due to the

relations of anticommutation. Now we shall show that our

generalized Pauli matrices may also be regarded as

representing an infinitesimal motion. Our proof is based

on Lie's theory of continuous groups of transformations.

A motion is a transformation M satisfying the relation of

automorphism

M'GM = G.

It may be represented by a matrix

M -(I + T)' (I - T),

where
T =G1 S

and

S - 8 - 3  0 
1

2  -s1 0

with arbitrary parameters Sv s2v BY

According to Lie, an infinitesimal motion is represented

by the matrices

Jk - (aT'/ask)s.o"

Explicit calculation yields

9 32- 12 83 g11 83g131 g 12 81g112
2s 282- 2 2  g22 erg 12:2

9 382- 28 3 9 30 -9331 231Ng 132

and 70 0 0

S(913 _ -g 23 _ 33

9 2 922 9 23
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913 923 93

J2 0 0 0

( 11 .9 2 1 9 2

-9 12 -9 22 _2
11 12 , 1

0 0 0

From this ternary representation the general anticommutation

relations may be derived. They read:

J 2 J 3 - J 3 J 2 = 11J1 + g12J 2 + g13J 3
J -J JI g1 2 J 22J2 g33

3 1  J3  + g2J2 + g3

JI1-J2 . 1 = g1 + + g33

These relations are in structural accordance with those for

the matrices V I V2 , V .

Therefore, VI, V2, V3 form a binary representation of the

operator of infinitesimal motion.

5. Generalized Dirac matriceu

The well-known Dirac matrices

u(l) t h -i o u(2) 0 0 1 0
0 i 0 0 0 1 0 0
i 0 0 0 (-1 0 0 0

U(3) 0.. 0 0 1 U(4) 0 1 0 0
i 0 0 0 0 0 -1 0

(0 -i 0 0 0 0 0 - I

fulfil the commutation relations
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U(J) U(k) + U(k)U(j) - 26(jk).

Therefore, the same procedure as in the case of the Pauli

matrices will lead us to generalized Dirac matriges V1, V2 0

V3, V4 :

V a (k)U(k),

where the coefficients a (k) have to satisfy the conditions

a J(1)ak(1) -gjk"

We know from chapter 3 that the generalized matrices Vl, V2,

V3, V4 fulfil the commutation relations

Vj vk + Vk 3 2gjk.

These relations are of fundamental importance for any general

spinor calculus.

6. Metrical decompositions G - AA' and transformations on

principal axes

From the preceding chapters we see that one of the fundamental

problems of the spinor calculus in Riemannian geometry is to

determine the coefficients a.(k) satisfying the condition

aJ(l)ak(l) = gJk

which we have written in the form

AA' - G.

This matrix equation is equivalent to the equation

B'GB - I,

where
S-1'I
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The transformation B consists of a transformation on principal

axes and of a transformation of normalization. The main

difficulty is to obtain the part transforming on prinoipal

axes. This problem has been solved theoretically a long

time ago. There is, however, no practicable explicit formula

for transformations on principal axes or, what is the same,

for transformations of similitude. We have found such a

formula for the simplest case of distinct roots of the

characteristic polynomial belonging to the matrix to be

transformed. The theory of this formula will be developed

in extenso in the following chapter.

7. On the theory of similitude of matrices

Two matrices are said to b(, similar to each other if they

represent one and the same homogeneous linear transformation

in two coordinate systems which are equivalent to each

other. This relation of similitude is a relation of

equivalence due to the equivalence of the coordinate systems.

Therefore, each matrix of a class of simLiitude represents

the entire class.

Any homogeneous linear transformation or class of similar

matrices may also be characterized by invariant quantities

the values of which do not depend on coordinates. Such

invariants are the coefficients and the roots oZ the

characteristic polynomial of the transformation, rational the

coefficients, irrational the roots, which are called the

eigenvalues of the transformation. If all the eigenvalues

are different from each other, then they will correspond to

a special coordinate system with reference to which the

transformation assumes diagonal form. This case shall be

considereu.

Any real or complex matrix R with n rows and n columns

possesses a characteristic polynomial

f(x) - det(xI - R) .

- n + axn - + ... +an -1x+a n - x - b1 )(x - b2) ... (x - bd).



The coefficients a,, a 2, a. n are the elementary symmetrical

functions of the roots b1, b 2 9 ... f b n:

an Mf n(b,9 . . br1 ) = (-1 )fl b1 b. n*

B donotes the diagonal matrix wvith the diagonal elements

b1 9 b 2  ... , b n

B - Diag(b1,b 2 9 ... , bn).

The matrix R and the matrix B have the same characteristic

polynomial. Therefore,

f(R) = f(B) - 0

is valid according to Cayley and Hamilton4 This identity is the

basis of the property

RP = PB

of the matrix

P =a n1I +a n-(R + B) + a n3(R2 + RB + B 2) +

n. +r-I n -2 B+..+Rn-2 + n-i.

The proof is very simple:

RP - PB

anlR- B) + a n 2 (R 2 B 2 + ... + R-B n

= f(R) - f(B) -0.

If the matrix P is regular, then the: relation of similitude

P- RP = B

between the matrices R and B will follow from the relation
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RP - PB. In order to investigate the determinant of P, wve

shall consic~er the structure of P.

For this purpose we introduce the diagonal matrices

1 Diag(19OO,...,OO),

12 -Diag(O,1,O,...,tOJO)t

In= Diag(OOO, ... 90,1).

ThkL "projectors" 1~ 1I 2 ... P in have the properties of

compliment arity:

1I1 + 12 + + In+=Iit

cf idempotence:

2 2
1I1 = Ii, I. 1n =n

and of orthogonality:

I i k = 0 if i $k.

The matrices

1 I-1' *** in = I - I

are in-tro'luced in order to define the matrices

B 1 = b 1Jil, ... 9 Bn = b njn'

which are related to the matrix B by the identities

fl(B,,..,B = a1l + B,

1 ~ n-l
f n- (B1 q** = a n-lI + an-2 B + 6.. + B



These identities describe the rel tionship between the elementary

symmetrical functions of n variables and the elementary symmetrical

functions of n - 1 variables. When we consider the matrix P

in the form

P

= Rn - 1 + R'(aI + B) + ... + a n-i + an-2 B +... + Bn -1

which is ordered with respect to the powers of R, then we see

immediately the formula

Rn-I +02fiB 'nf- 1 'n
Rn- l(B,...,B n) + ... + ( ,... ).

Now we distribute one of the matrices

B1 , B2 , ... , Bn' let it be. the matrix B k, onto the remaining cnes

in the following way:

C1 = B + bkI 1 P ... , Ck. I = Bk-1 + bkIk I ,

Ck = Bk+ I + bkIk+ , ., Cn-i - Bn + bk'n.

The sum CI + ... + Cn- 1  is equal te the sum B1 + ... + Bn n

The same holds for the corresponding power sums of higher degree:

+ ... +)C -

(B1 + bkI,)h + ... + (Bk- 1 + bklk.) +

h h h

- Bk + C'" + Bk- + + .+ "' + Bn +

+ bh(I + ... + Ik-i + Ik+1 + ... + I)

h Bh
B1 + ... + B B

I n
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From this we obtain the relations

f l(Cl'" ''Cn-1 )  - fj(Bj ''''B n)'

f n - 1(C 1 '....'O n -  )  . f n- 1 ( BI'' . 'B n ) "

Therefore, we may write the matrix P in the form

P = Rn l + -Rn 2 fl(C 1
,...,Cn 1) + ... + fn1 (C ,...,Cn.1 1 .

Now it is easy to show that the natrix P will be singular if

two eigenvalues of R are equal.

We assume that bi is equal to bk and that i is less than k. Then

the matrix C. will be equal to the matrix b.I, which may be

.ommuted with any matrix. Therefore, the matrix P contains the

factor R - Ci the determinant of which is equal to

(-1)nf(bi). Hence, the determinant of P vanishes.

From now we propose that all the eigenvalues of the matrix R are

different from each other. This assumption, however, does not

imply the regularity of P.

This fact -ay be seen by the example of the matrix

R =Dia'l,-1),

the eigenvalues of which ar3 the numbers 1 and -1. The two

possible matrices B,

B = Disc(I,-1) = R

and

B Diag(-oI) =-R,

involve the two matrices

P = 2R

and

P - 0.
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The former one is regular, the latter one is singular.

The following is valid generally: There is at least one

matrix b among all the possible matrices B, to which a regular

matrix P is coordinated. This is the fundamental theorem

of our theory. It is proven as follows.

By V we denote the set of all variations with repetition,

by Q the set of all permutations of the eigenvalues

b19 b 2 .. , b n . The set Q consisting of n1 permutations

splits into (n-l)! classes of cyclic permutations, a certain

one of which we denote by Z. The sets V(P), Q(P), and

Z(P) of matrices P correspond to the sets V, Q, and Z of per-

mutations. The matrix

S = f'(R) = an1 I + 2an2R + + ne
n 1

is the sum of all the matrices of a class Z(P). This relation

is based on NEWTON's formulae which describe the connection

between elementary symmetrical functions and power sums. The

determinant of S is equal to the discriminant of the

characteristic polynomial of f, disregarded the sign. Hence,

det(S) is different from zero. On the other hand, it is

equal to the sum of all detcrminants of the matrices from V(P).

This sum, however, is equal to the. sum of the determinants

of all matrices from Q(P) because all matrices from the set

difference V(P) - Q(P) are singular. Therefore, at least one

matrix from Q(P) must be regular. This proves our fundamental

theorem.

We are not able to say aore about the matrices P if we do not

know the structure of the radical field of f.
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8. The general relationship between tensors

and spinore

If we have a metrical decomposition

G - U,(H)U,

then the connection between a first-rank tensor u and a

first-rank spinor v is given by

U = U -1 (; C V)

because this relaticn involves

u'Gu . (;'R ;)(v'H v).

A tranuformation T of v which is automorphic with respect to

H (T'HT = H) induces a transformation

S = U 1 (T C T)U

of u which is automorphic with respect to G

(S'GS = G). For U and V - U-1 we use the notations

(u1 (11) u2 (11) u3 (11) u4 (11)

u1 (12) u2(12) u3 (12) u4(12)

U \u1(21) u2(21) u3(21) u4(21)

ui(22) u2(22) u3(22) u4(22)

and

v1 (11) v1(12) v1(21) v1 (22)

v2 (11) v 2(12) v 2(21) v 2(22)
V =(v3(1') v3(12) v3(21 v3(22)

v4(11) v4(12) v4 (21) v4 (22)

The following relations of orthogonality are valid:
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u p(mn)vP(rB) = 6(mr)6(ne),

vP(mn)u (mn) = 6P
q q

Now the relations between tensors and spinors may be written

in the form

up - ; 'Pv (p = 1,2,3,4),

where

Vp = ( vP(111 vP(12)

vP(2) vP(22)

The only restriction we make is the condition of Hermitean

symmetry:

V,P = Vp.

The metrical decomposition

G = UI(RqgH)U

reads explicitly:

gpq = u p(mn)u q(rs)h(mr)h(ns).

From

gpqvP(mn)vq(rs) = up(ab)uq(Cd)F(ac)h(bd)vP(mn)vq(re) -

= 6(am)6(bn)6(cr)8(ds)R(ac)h(bd) =

- R(mr)h(ns)

we derive the important relation

gpqVPV q - HH.

Now we consider a metrical decomposition

G - AA'
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Using the notations

/a(1) ai(2) a,(3) a,(4)

A= (a 2(1) a2(2) a2(3) a2(4)
a 3 a(1) a 3(2 ) a 3( 3 ) a,(4 )

\a4(1) a4(2) a4(3) a4(4)

and 7a1 a2(1) a'(1) a4(1)

1 1(2 a 2(2) a'(2) a4(2)
A = a1(3) a2(3) a (3) a4(3) ,

a1(4) a2(4) a3(4) a /(4)

we may write:

gpq ap (j)a q(j),

gPq = aP(j)aq(j),

We say that

u(j) = a p(j)up

are the components of the tensor u with respect to the

"four-leg" A. The ccrversion is also possible

up = aP(J)u(j).

Analogously we write

V(j) - a P(j)v p

and

u(j) - ;,v(j)v.
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9. Weyl's concept of covariant spinor

differentation

In his paper Elektron and Gravitation (Zeitsohr. f. Phys., 54,
1929), H. Weyl inaugurated a concept of covariant spinor

differentiation which forms the basis of our generalization.

In this chapter we shall consider its essential properties.

When a metrical decomposition

gq=ap (jaq~

is given, then the Christoffel quantities

Fpqr = (a pq /axr + agrp /ax q ag qr/ax p)/2

have the form

rpr=(a (j)8aa (j)/axr + a q(j)aa P(j)/axr +

+ ar(j)aa (j)/ax q+ a p(j)aar(j)/axq -

- a q ()aa r ()/axp, - ar(j)Oaq(i)/ax p )/2.

The quantities

W pqr P pqr a p(j)daaq(j)/dxr

-(a p(j)aa r(i)/axq - a q(j)ba~)/xp /

+ (a q(J)aa P(j)/axr - a P(j)aa (j)/axr /

- ar(i)(da q ()/ax p - aa, (j)/ixq )/2

have the property of antisymmetry:

Wpqr Wqpr'
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They are the coefficients of an infinitesimal rotation

which has the same absolute character as Levi-Civita's

infinitesimal parallel displacement. The quantities

W r(jk) -ap(j)a q(k)W pqr

are its components with respect to the four-leg A.

Weyl assumes that the connection between tensors u and

spinors v is characterized by the relations

u(j) = V'U(j)v,

where U(1), U(2), U(3) are Pauli's spin matrices, and U(4)/

is the binary unit matrix. An infinitesimal W-rotation has

the effect

bj)= 6W(jk)u(k) = ',i,(jk)u(k)dxr

What is its effect on the associated spinor v ?

Without any loss of generality we may assume that

6v - 6Tv - Tryv dxr

Now we have

bu(j) .2;'U(j)6v 2;'U(J)bTv

.6W(jk)u(k) - 'SW(jk)U(k)v,

and therefore,

2tJ(j)8rn - 6W(jk)U(k),

46T - 6W(jk)U(J)U(k).

Finally, covariant spinor differentiation is defined by

DV dv + 6y - (d + 6T)v,

D r v (a/d r + T r)V,
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where

Tr "W (jk)U(J)U(k)/4.

10. The general concept of covariant

spinor differentiation

We assume that the relationship between tensors and spinors is

given in the same general way as in chapter 8. Then we have:

u(j) = ;,V(j)v, '(j) - V).

An infinitesimal rotation 6 has the effect

6u(j) = ;' dv(j)v + 2 'V(j)6v -

- ;,(dV(j) + 2V(j)6T)v -

= ;'(8V(j)/axr + 2V(j)Tr)V dxr.

If 6 is an infinitesimal W-rotation, we have

6u(j) - Wr(jk)u(k)dxr = r'W(jk)V(k)v dxr.

Hence, the relations

2V(J)Tr = Wr(Jk)V(k) -V(j)/ax ,

2V(j)V(j)Tr = Wr(jk)V(j)V(k) - V(j)aV(J)/axr

are valid. Now we have to calculate the invariant V(J)V(J).

We obtain the following result:

V(J)V(J) - a p(j)a q(J)vPv
q = g pqVpV

q

Therefore, we may write
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Tr = H 1 -I1 (Wr(jk)V(j)V(k) - V(J)8V(J)/aXr)/2.

Following H. Weyl, we define

Dv = dv 4 6Tv,

DrV = (8/Ox r + Tr)V.

This definition of covariant spinor differentiation is much more

general than that by H. Weyl, where the matrices V(j) are constant.

Our definition seems to be the most general one that is possible

at all.

11. Schwarzachild space

In this chapter we shall illustrate some of our theoretical

conceptions by the example of the Schwarzschild space. The

quadratic differential form

2(ds) =

-(1 - 2m/r)(dt) 2 + (1- 2m/r) 1 (dr)2 +

2 2 2) 2 2+ r (du) + r sin u (dv)

is the Schwarzschild metrical fundamental form. On introducing

the coordinates x1 = t, x2 = r, x 3 = u, x4 = v, we obtain the

matrix

(-(1-2m/r) 0 0 0

0 (1-2m/r< "  0 0
G0 

0 . 2 20 20 0 0 r2sin 2u

as the metrical fundamental matrix of Schwarzschild space. The

matrix
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/ 2mr 0 00
li121lJ2 o1o

0 (1-2m/r)/2 0

0 0 r 0

0 0 0 r sin u

is uniquely determined by the metrical decomposition

G = AA'.

The matrices

(i(1-2m/r) 1/2 0 12 0 r sinu

U= i2.1/2 0 (1-2m/r) "1/2 ir 0

0 (1-2m/r)1/2 -ir 0

i(1-2m/r)1/2 0 0 -r sin u

and

H = 0 -i
\i 0

lead to a metrical decomposition

G - U'(AH)U.

From

/i(1-2m/r)-
/12  0 0 i(1-2m/r)y1/2

V=i12" 12 0°(1-2m/r)/2 (-2m/r)1/2 0

0i~/ -i/r i/r 0

1/r sin u 0 0 -1/r sin u

it follows that



- 24 -

V 1 . - 2-1/2 i(1 - 2m/r) 1/2( , 0

V2 = 2-1/2i(1 - 2m/r)1/2 (0 1i
-- 1 0 '

V3 = - 2 1 2i/r 
0 - )

= - 21/2i/r in u 1 0

(0 -1)

Conversion of indices yields'the matrices

V(1) -i2"I/2 (1 0 )

(0 1

V(2) -i2 1 /2 0 1 )

V(3) -12"1I/2 ( 0  i

(i 0

v(4) =i2.1/2 (1 0

0 -1

This shows that in the case of Schwarzschild space our

theory of covariant spinor differentiation does not differ

from Weyl's theory. The same holds for all diagonal

metrical fundamental forms.
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13. The decomposition of the Gordon operator

1 . Introduction:

Dirac's celebrated method of deriving the euqation of the

electron was based on the decomposition of the Gordon operator
in the form: (= - m2) /ii+m) (-. ai = 0 (1),

which led him automatically to both the known Dirac
matrices with their commutation relations, Pnd to the Dirac

equation. By a decomposition c.f this kind it is obviously possible

to reduce a second order differntial equation (Klein-Gordon

Eq.) to a differential equation of the first order (Dirac Eq.).

This was so far the decisive point since positive definiteness

of the probability density ad .9.a~ivistic covariance

postulated a differential qua-ion of thi first order.

To find the equation of thk electron (and also of other

elementary particles) in the jmral theory of relativity it

appears obvious to proceed n&lo,;ously, i.ei to decompose the

Gordon operator and reduce it tn a form which is analogous to

(1). In the following, the possil,ilicies and conditions of a

decomposition of that kind are studied more thoroughly and are

then discussed. 6
)

2. Decomposition of the Gordon opirator:

In the general theory of relativity equation (1) has the

following form:

(2) (= - m2 )y = ( g i DikDk - m2 )T - (TV iDi + m)( YVkDk-m)wO
i,k i k

At this place we shall notice that our derivation of Dirac's

equation in the First Final Technical Report is wrong because

it was based on an uncritical concept of covariant spinor

differentiation.
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where D is a differential operator acting on the wave function

T, (it may e.g. be the covariant differentiation, but it may

also be much more general. Any assumption in point is

withheld here intentionally).

If we now form the product (:V Di + m) (2 Dk - m)
i k

we arrive at:

(1) 1 Z (viDvkD + VkDkVDi) m2
2i,k k k

If, then, we postulate that DiVk - VkDi for all i and k,

it is found that (3) passes over into

(s') .- Z (vivkkiDk + VkViDkDi)i,k

For the purpose of making a comparison with the left side of
(2) we write:

(4) 3J =7ik DD = .7 (gikDiD +kiDkLi)

The comparison of (3') with (4) gives:

(5) viv k  _ gik

It must, however, be mentioned that this derivation includes

the assumption that DiDk DkDi, which usually applies in

the general theory of relativity. If DiDk a DkDi (as e.g.

in the Lorentz metrics), (5) is replaced by the condition

(ViVk + VVi) . 2gik, as can readily be seen from (3') and (4),
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Hence, for a decomposition in the form of (2), the following

conditions must be satisfied:

(I) DiVk vkD

for all i and k
(ii) ik ik

(II) can also be written in the form ViVk gik' since

k i u il ku V  il ku ilg V

vi g v-V- g  u V= g l 6 i u = 9 g lu ilvl gkUV thus

being equal to g V1 .

3. Discussion:

a) It is easily seen that vivk + vkvi = 2gik follows from (II),

ik ki ki ndn ik k i ik ki ik
since g = g V , VV +VV g +g 2g

It must, however, be noted that this conclusion cannot be reversed.

The condition (II) thus implies a rcstriction for the Vi which

is essentially greater than that cf the usual condition

ivk kvi ik
VV + VV = 2g

b) From (II) it can further be derived immediately that

vivk = VkVi, h(:nc IVi Vkl = 0

gik ik

c) From (I) and (II) it follows moreover that g Di g ik or

ik I i k ik ik ik
that Dig i k 0, sincc V V Di = g Di = D iV V .DiS . (6)



- 28 -

That means that if Di is assumed to be the covariant

differential operator for a tensor of the second rank,

(6) represents nothing else but the Ricci theorem of the

general theory of relativity. The conditions (I) and (II)

thus appear to be consistent with the general theory of

relativity.

d) It is above all the condition (II) that seems to postulate

rather too much since it fails to be satisfied already in

the case in which the metric is diagonal. For if the metric

is assumed to be composed of the diagonal elements al, a2,

a , a4, the following relation must necessarily be valid

according to (II):

2
=g1 . =a. and hence

(det Vi) 2 (det gii) , i.e. det Vi = ±Y(det 'ii) / 0

for all i (x)

But on the other hand also ViVk = gik = 0 must be satisfied

for i k. From this it can be concluded that either det Vi
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or det Vk must be zero, which is inconsistent with (x).

4. A method for decom osina the Gordon operator so that

ik ki ik
ViV +V =2g :

In the following an attempt is made to decompose the Gordon

operator, retaining the commutation relation: vivk + vkvi =2g

We are prompted by two reasons to proceed in this way:

On the one hand it appears extremely difficult, and most

probably even impossible, to satisfy the conditions (1) and

(II), as is apparant from 3d), on the other hand, the natural

extension of the ordinary Dirac commutation relations

ViVk + VkV i  26ik to the general theory of relativity is given

by 6 ik - 8ikv so that

Vivk + VkVi = 29ik or
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V IV1 + . 2gik are obtained directly (Vi = Vi).

Here we start again from (2) and (3): Hence

(7) (7 .VD + m) (7VkDk - m) = _(VDiD + VkDkViDi) 2
i k i,k

ile must now again postulatc that DiVk = VkDi, writing at the

same time additionally DkDi = DiDk + Aki (the Aki will be

determined more accurately later). (See appendix). Then (7)

passes over into

k .V~ +Ik~

(8) (;-VD + m)(2VkDk m) = . 2 _(viVk + vkvi)DiDk
i k 2i

i k i,k

+ vV iA k - 2

i,k

We now assume that ViVk + VkVi 2g i k  and that the Klein-Gordon

Eq. is valid: (0 - m ) = ("g ikDihk - m2 )v - 0

Hence (8) reads to

(9) 2 VVA = 0
i,k

which means that if condition (9) is satisfied, it will be

possible to decompose the Gordon operator and reduce it to

the form of (2) and hence to a Dirac equation

(7ViDi - m)T - 0 using vivk + vkvi . 2giA and VkViAki " 0

i i,k
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5._Conclusions :

It is possible to decompose the Gordon operator in the form

(0 2 - m2
+) (v D m) (Vk +):

i k

1) If 'D i  = VD i

/V iVk = ik

2) Or if D Vk =vk Di

V'Vk + VYv 2g4

and ZV'kViAk i 0 J, A being defined by DkDi
i,k

D iDk + Aki.

Appendix.

Determination of the Aki:

From the equation defining the Aki:

(10) DkDi = DiDk + Aki

it can be derived immediately that the Aki must be anti-

symmetrical.

For if in (10) i and k are commutated one obtains

DiDk = DkDi + Aik or DkDi = DiDk - Aik, (11)

Hence the comparison with (10) cntails the antisymmetry
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Ak- - Aik. It must be pointed out that, in the case in which

the Di indicate a covariant differentiation and DkDi acts on a

vector, Aik is the Riemann-Christoffel curvature tensor.

If we assume for Di quite generally the form:

(11) Di = i + Ci we obtain for DkDi:

DkDi - DiDk - aick - ciak - CiCk + 8kCi + Ck i + CkCi =

= DiDk + (Ckai - Ciak) + (a kCi - ick) + (CkCi - CiCk)

i.e. for the Aki:

(12) Aki = (Ckai - CiYk) + (akCi - iCk) + (CkCi - CiCk)

Which also shows the antisymmetry at first eight. (12) shows that

the Aki will be determined as soon as the differential operator

Di is known.



14. Development of the srinor jory in the R±15pnnian geometry

duringthe last yeare

A. Introduction:

In this chapter a survey will be given on the efforts made and

the developments in the spinor theory in the general theory of

relativity in the course of the recent years.

Since about 1930 when Fock, Iwanenko, Weyl, Schrdinger, Infeld

and Van der Waerden [4] attempted for the first time ~a
generalization of spinors and of the Dirac theory of the electron

to the Riemannian geometry and obtained fundamental results,

no essentially new results had been obtained in this field for a

long time.

Only less than ten years ago interest in this field grew again

in order to study the relationship between the field theory and

the elementary particle theory and the quantum electrodynamics

on the one hand and the general theory of relativity on the

other.

What are the main problems that remained unsolved in 1930 and

which, therefore requirced a mere detailed investigation in the

last years and even now are not completely solved ?

(i) In most of the studies with the what is called "four-leg"

formalism a special system of co-ordinates was used, Only

Schrb;dinger [3' based the calculations on fully general,

curvilinear co-ordinates. He did not succeed, however, in

establishing a completely consistent spinor theory. (See the

following points.)

(2) There was no general analytical expression for the spinor

affinity in arbitrary curvilinear co-ordinates. Hence the

analysis was widely uncertain.

(3) The hermiticity properties of the y-matrices required by most

of the authors were admissible only for special systems of

co-ordinates but not for general ones. As a result, difficulties

arose later in the formation of covariant expressions.

(4) The relationship between spinor theory and bispinor theory

including the relationship bet wcn the 1-matrices and the
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1-matrices was not known at all.

(5) The behavior of spinor equations towards P-,C-,T. transforma-

tions which play an important part in the theory of elementary

particles has not yet been discussed sufficiently. Above all

the problem of the violation of paritj° in the general theory of

relativity has hitherto not been explained.

All these shortcomings might perhaps be explained best by the

lack of an axiomatic theory of spinors in the Riemannian space.

Above all, E. Schmutzer [5,6,7,8] dealt with this axiomatic
theory and made studies on spinor algebra and spinor analysis

in this sense. He also succeeded in solving a large number of

the above problems. The following considerations are based on

his studies.

Also the papers of P. Bergmann [9] , Green [IO, [111, Fletcher

[12], Nakamura and Toyoda L13], Stephenson [14], Higgs [15]
ani others are worth being mentioned. They also contributed to

the solution of the problems mentioned above.

The following pages give a survey on the results of the most

important studies.

D. Spinor algebra in the Riemannian space:

1. Fundamontal conceptions:

Denotations: Greek indices refer to the real tensor space which

nhall have the signature (+,+,+,-).

Latin capital indices refer to the twodimensional

spinor space.

The following formulas are defined in simple extension to the

corresponding formulas in the Minkowski space.

It has been found that spinor algebra as well as apinor analysis

cLn be constructed fully consistc:ntly.

a) The metric in the spinor space shall be given by hA., so that
for a spinor u:

uA W hBA

uA .hAB uB
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where h hCB hC 6 C
AB A = hAB .hBA

The behavior for automorphic transformations of a spinor is

described by

A' A' A
u1.. A A u

u AA
UA, = A' uA

hAC A' hAB

A' C B A'
with A B AA' =h and A A =hB

from which we also obtain

A' A' A'
A B AB

AIB -A B A B
A ' A' At,

b) The relationship between vectors (generally tensors) and

spinors, in analogous extension to the Lorentz case, is given

by:

AB A  AA

= AB kB and the inversion

UIB = .& Pg B

( AB is called the metric spin tensor

2. Fundamental axioms for the construction of the spinor algebrat

The whole algebra is dominated by 2 axioms:

First Axiom: Hermiticity of the metric spin tensor:

IiAB p BA
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Second Axiom:

A V BC " g hAC 2 2 V Qr A AC

(4 Q . . . Levi - ivit ' s pseudo-tensor)

The second axiom is substantiated by splitting the spinor

product 1 A %C into one part symmetrical in j and

into another antisymmetrical in 4) , in the following form:

pA VBC hA C + B VC

For simplicity A is normalized to 1. B is then obtained from

the inner consistency of the axiom (left-hand side of the

equation is substituted in the right-hand side).

The followJing important and interesting relationships follow

from the two axioms:

iA a A 2g V

pA dBC 4hAC

dB 696D = -2hA6 h B

and C 0 (1 = -2 hp h\7~AB 461D A BD

The last formulas are derived mainly by interchanging in the

second axiom 4 and V, then orce adding this expression to, Cr0e

subtracting it from the second axiom and then multiplying it

with adequate factors.

C. Spinor analysis in the Riemannian space:

A covariant derivative of the spinors shall be defined in the
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Riemannian geometry. For only spinor algebra and spinor

analysis make it possible to establish spinor equations.

Definition of the covariant derivative:

UAVp =UA,v - VuB
uAiv Aq AV u B

= A , A + r BV

By

AB • • • spinor affinity

The purpose is to find an cxpression for the spinor affinity.

The following axiom (Third Axiom) shall be added to the above

definition with which spinor analysis will then be set up:

a A B  0

Hence it determines the covariant derivative of the metric

spin tEnsor.

The definition of the covariant derivative gives the

following relations for the covariant derivative of the metric

in the spinor space:

hAB ; 0

= CD!hABiV h ;V hAC hDB

hABv - hCDIV hDB hCA

With the abbreviation

hAB 2ihjLb V h-i\,2

the following relations are obtained with the aid of the second

axiom:



= h38B

hAB; V I ) h AB

h AB; hAB
V

Hence these equations detcrminu the covariant derivative of

the metric spinor.

Since it would be too long to give all formulas and derivatives

whinh eventually lead to an explicit expression for the

affinity, we shall briefly outline the method:

B is split in the following form

B [B] +ihA
A AV +  A13_

The significance of this splitting will become manifest only

in the following considertions. The following conditions for

the follow directly from the formulas derived abe:

hAB,V = CB 1 -hCA [ C] J-A AC B-

hAB = _hBLCj"hAc LC3

besides

A  [-1 J= + where = eniVZ h ho h•AVJ [IV = ,r 1 h 2

(the latter formula is the relation following from the

definition of the covariant derivative:

A 1 = (In h) - 1IhAV s il d

AAIshall bc split into rt.al and imaginary part:
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A K, + V 1 (for significance of iV see below)

The following explicit expression can be obtained for the

spinor affinity: (for more detailed derivation see the original

paper L5 ).

rB B \1 +hAB ( - IT +4

A A V - V

where

fB 1X~ 6 C 1 C;
4 XV T~ 4 6A, V

Significance of 1t:

According to E. Schmutzer (in contrast to Van der Waerden and

Infeld) -V can be related to the four-potential AV

V 2Av  - -''

since in a phase transformation (rotation in the spinor space)

AB1 B ei i/2 PI transforms like the electromagnetic
A ~A V

potential:

V  2e To

In this respect the spinor affinity is thus determined. Of

course we can write 1 = 0 (space without electromagnetic

field).
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D. Dirac equation:

To develop a Dirac equation in the Riemannian space two

independent ways arc possible, in analogy to the Lorentz space!

e.g. that of Infold and Van der Waerden L16] which is based

on the spinor theory, and that of the bispinor theory which

Schr'dinger [3-j used for the first time. However, he did

not succeed in developing it fully consistently.

E. Schmutzer '5,7,61 c-crdinated these two forms.

(i) For this purpose iL i iiportant to construct a theory

of the Dirac y-operators:

Unlike most of the authora wliich based the theory on the

Dirac V-matrices, hence rsnA' d it as primary and the

metric as secondary dmi to t'1. relation

7 4TV + YV I =2g ) , vc -Lci]. integrate the y-operators

into E. Schmutzer's axiomatic theory L7] . The commutation

relation shall, however, be valid:

Since, like in the Lorentz metric, the IAh are very probably

(as will be proved leiter c'.i i-clated to the Pauli matrices,

the following extrcmely: gCneral statement is made upon

which also the seconc a. xiori " based:

where C (an operator) J.r s'.l1 unknown, but is determined to

be -4C3 = C, if yy7, iq a>tn -xnressed by the same formula.

Y5 can be defined in analo'ny to the Lorentz case:

( 5 = V Pa

Eventually, C = 1 ip -',*qIned so that the above statement

can be written as followi -',d at the same time regarded as the

fourth axiom:
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+

Besides, also y g 4VV shall be defined.

It is evident at first sight that the generally known

commutation relation y VV + YV Y4 = 2g 4 is a direct

consequence of this axiom.

In the theory of y-operators its hermiticity conditions are

of great importance.

It has been found that the simple extension of hermiticity

in the Lorentz space to the Riemannian space
+

YV = YV

4 ay4  (a real)

is impossible in the framework of this axiomatic theory but

that either only

S= Y and Y4  = - Y4

YV += YV and 4+ Y4

is compatible with the previously derived conditions and in this
+

metric. In both cases, howevcr, it follows that Y5 Y5 "

(2) In order to EstahJish the relationship between spinor geometry

and bispinor geometry the problem of the splitting of y-operators

into the Pauli C-operators has still to be solved.

If the most general formulation

/1 a p t -O p "

1 = i :: -:

which may bring about such a splitting, enters the above formulas

for the y and eA tc. then wt obtain a 04 - 0 in any case.

Thus, it follows generally that
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0,

1
L = ( with the relations

OrpQ % V+ 6 V = 2gP V

Q LOfv + Q %,P = 2gA V

where ? = 1±Afi

and Q = -?A
AB

For Y5 we obtain the splitting 5 = ( 1

(It should be reminded that 1 is the binary unit matrix)

If the above hermiticity condition (x) is impo'ed on the

y-matrices, then the following simple formulas are obtained:

oi i
Q 4 =-Q4 h = 1, = 0

i.e., furthermore

ioj + aj i = 2giJ

i 4 i

(4)2 = g44

(3) Construction of the Dirac equation:

(a) Spinor theory:

According to Van der Waerden 161 the Dirac equation in

iiiemannian geometry has the following form:
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B -iCA 0 =0

BA A

where YB, was determined in chapter C:

B; B, BA

'B; B A

where
rB (B + i h B + +-

A ~~~ ~ + Tr+7i ( i,

(For more dctailed significance of the individual quantities

see chapter C). P 0 O, if hermiticity is imposed on the

y-matrices in the abov s 3nsc.

7[ 2e
-Le A A - four potential

The physical significance of has hitherto not been

fully explained.

(b) Bispinor theory:

In this theory the Dirac equation can be written in the

followi g form F8]

where

/0 , - )P Q -0 1
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and - + r' - bispinor

Both forms become identical if

T .a V! ) 0 . (-,ATA'(BA

0~ A

Ad~joint Dirac equation:

In analogy to the Lorentz case it is

Cv= V " 0 P
V Y 0

Continuity equation:

(f yL ) =0

where v =+P

P is determined from the adjoint equation, the continuity equation

and the covariant differentiation of the bispinor with the

exception of a constant factor, which, in this case, was put

equal to 1:

1 -h B' -I -
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E. Formation of covariants:

The problem of the formation of covariant expressions is of

special importance in formulations in the field theory and the

theory of elementary particles. For this reason the formation

of covariant expressions within the framework of this theory

shall be dealt with briefly.

In the s(nse of the spinor theory developed in B. and C. the

transformation behavior with rcspect to spinor and tensor space

can be read easily from the above index form and,therefore, needs

no further discussion.

This is also possible easily within the framework of the

bispinor theory if the relations between spinor and bispinor

theory given in the last chapt-r are used. With thL aid of

these expressions the bispinor theory can be reduced to the

spinor theory.

In this way the transformation behavior of the following

quantities can be understood easily:

T . . .. hermitian, scalar

(i y4 T) -. . . vector, hermitian

(i Y 5 
% )

. . . . pseudoscalar, hermitian

etc. i.e. expressions, fully anf.logous to the Lorentz case.

It is pointed out that for this purpose no hermiticity

conditions are imposed on y .

F. Generalized Dirac equation according to E. Cartan

It is of some interest to compare E. Cartan's method of

"repere mobile" with H1. Weyl's ,reatment as represented in the

preceding two chapters. Cartao. writes tht Dirac equation in

the form ((h/i)D - n K)U - 0,
0

whe rehe -1 0 0 0

K= 0 -1 0
0 0 t 0
0 0 0 1

D) 43 the oper, tor of covariant differentiation. Its effect onto a
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vector x is the following:

Dx - dx + J, (11)

in which d is the relative differentiation, and i is a certain

infinitesimal rotation. The vector x corresponds to a spinor

quantity X of the second rcnk. The co-ordination x-OX is

such that

(xy) - (xy + YX)/2, (12)

where (xy) is the inr,.z product of the vectors x and y. The relation

(12) is the hndamental formula of Cartan's spinor calculus. The

effect of the operator D onto a spinor X is

DX - dX + ix (13)

in which

X . (xl - KZX)/2 (14)

pnd

41r1 + d = o. (15)

These relations are in full agreement with the case of an euclidean

metrical ground form. The transition from a spinor X of the second

rank to a spinor u of the first rank is symbolically done as follows:

x - uu*. (16)

The infinitesimal rotation cozresponding to the infinitesimal rotation

-1X is

U A -'Lu/2. (17)

Proof'.

, - uu + u,;u* - -,;-,uu"/2 - uu'. :.' */2 (XJ . - X)/2.

Therefore we obtain

Du - du - 44u/2.

The infinitesimal matrix depends on the metrical ground ftwo,

Its calculation is formally similar to that of Weyl's dE. Its meaning

is, however, somewhat different from that of dE.

/
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G. Remarks to the preceding report on recent literature

The investigations referred to in the preceding chapter

have some features in common with our own investigations.

The most remarkable of them is that covariant spinor

differentiation is undcrstood in the sense of the

tensor spacE and not in that of the spinor space.

This has been done for the first time by H. Weyl after

E. Cartan had shown that the other way was

impossible. There is only one possibility of

generalizing Weyl's concept of spinor differentiation:

variable spinor metrical fundamental form H.

This possibility has bcen used by the authors

mentioned as well as by ourselves. Our fundamental

assumptions, however, arc much more general than those

of othcr authors. Therefore, our results do not go

into such detail and arc not yet capable of special

physical interpretation. Some of the axioms

introduced by other authors seem, however to be

artificial and not sue6Lsted by geometrical facts.
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1514athematical appendix: A Quadratic calculus

1,:is chapter contains a calculus similar to the Kronecker one. We hd:ve

developed it in order to investigate spinor algebras in a formally

simple manner. Let u and v be two binary vectors the elements of which

are operators:

/UI 1'V1u.(.1
( U2  V)2

Let A be a binary matrix with real or complex elements,

A = /a11a2  12

1 a22)

..ioh interrelates the vectors u and v:

v - Au.

P,, means of the matrix

2 0 0 0 i

R = 0 1 1 0

0 0 0 2

define the squares

2U 
2

U(2) - R(u&u) U U U U
2 /

"2U /
2

. 2 2
a1 1 1 1 a 12  a 1 2  1

(2) = a11a2 1  aIa22 ' a12a2 1  a12a2 2

a 2 2a21a2a22 2
a2 1  2 1a2 2  22

Low we have



2a2 2a 1 2a a 2a 2

11 12 11 12

R(A gA) 2aa1 1 2 1 a 1 1az2 +a 2 1a 12  a 1 1a 2 2+a 12a 2 1  2a12a 2  
2)

2 2
2a 2a a 2a a 2

\ 21 21 22 22 21 2a22 /

From this basic relation we devive the foll6wing:

v(2) = R(v~v) R(A )(u.) =(2)R(uK&) A(2)u(2).

As an example we consider a two..component model of our derivation of

generalized Pauli and Dirac matr'ces. We assume that the operators

UI, U2 fulfil the commutation relations

UiUk + UkUi = 2 ik9

which we may write in th form

~(2) 2 .I)u(2 o 2 C;\

Then we have 2

/ all + a1 2

V(2) 
2 '1 1 a2 1  

+a1 2
a 2 2

a 21 + a 22

The requirement that

ViVk + VkVi o 2gik,

or
or (2) = 2i'g 1

v g12 ,

S\922

leads to the conditions

2 2
a11 + a 12 11

a11a21 + a12a22 '1121

2 2
a21 + a22 9 g22'

which may be written in the form

AA' - Go

This result is well-known to us.
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